Biology Benchmark 1 Study Guide

Key

Common Lab Measurement Tools:

	A gra	duated	cylinder is used for precise mL measurements
--	-------	--------	--

- A beaker is used for _____ measurements
- A ______ stick with cm/mm is used for precise short lengths

Experimental Design

Independent Variable

- What "I" set up (
- Always plotted on the _________-axis

Dependent Variable

- What "I" measure (data (Sy) +
- Always plotted on the _____-axis

Practice Problem 1: Use the graph to the right →

What is the IV of this experiment?

average rainfall

• In what unit is the IV measured?

mmyear

What is the DV of this experiment?

production

In what unit is the DV measured?

9/m² per year

Practice Problem 2: Use the data table to the right \rightarrow

- What is the IV of this experiment?
- What is the DV of this experiment?
- Can you think of three constants that would be appropriate?

1. species of tish

RAINFALL AND PLANT GROWTH 3000 2500 2500 1500 1000 2000 1000 1000 2000 3000 4000

Average Rainfall (mm/year)

BREATHING RATES OF GOLDFISH

		Water	Temper	cature	
Trial	26°C	20°C	14°C	8°C	2*C
1	101	80	54	(31)	2
2	98	25	_52_	27	3
3	102	81	53	29	2
4	103	78	55	28	4

Based upon the data table, what question do you think this experiment was trying to answer?
 Explain. . .

How does water temperature affect the breathing rates.

of gold fish?

The table below shows the number of species of different types of simple land plants.

NUMBER OF SIMPLE PLANT SPECIES

Simple Plants	Number of Species
Bryophytes	20,000
Club mosses, spike mosses, and horsetails	1,000
Ferns	12,000
Total	33,000

 $\frac{20,899}{33,809} = \frac{20}{33}$ $\frac{30}{33} \approx \frac{30}{30} = \frac{2}{3}$

According to the table, approximately what proportion of all simple plant species are bryophytes? 1/3

1/2 2/3

Bias	

Placebo = sugar pill – It is 10 en + i C	in shape, size, and color to medication but it contains no medicine.	
Unintentional		1
 May be the result of not setting up enough _ 	test subjects OR forgetting to set up a Lontrol group	
	Unintentional	Placebo = sugar pill – It is in shape, size, and color to medication but it contains no medicine.

Intentional

Purposely skewing data, omitting trials, or _

Usually done to make your

	High Capacity: Allows for homeostasis in living things and keeps bodies o water at a relatively stable temperature
•	Polarity: Causes Conesion of water molecules and of the substances
•	High Surface Tension: Gives small insects the ability to across water/due to cohesion
•	Universal Solvent: Many substances are able to in to water forming solutions. — Example: Fluoride dissolves into water because it is attracted to polar water molecules
• /	Water is neutral with a pH of 7. All substances below 7 =
<u>Inor</u>	ganic Vs. Organic norganic = no carbon and and organic = containing carbon bonded to hydrogen and oxygen
	and are organic
Qui	ding Blocks
	arbohydrates monosaccharides
• L	pids fatty acids 3 glycerol
• P	roteins a mino acids
• N	ucleic Acids Mucleotides
Impo	rtant Examples
	arbohydrates = Quick energy source!!!
С	ELLULOSE: source of diplot fiber/makes up cell wall in plants and bacteria
_	Stucose: molecule created during photosynthesis Cotto

Important Properties of Water

2. Lipids = long-term energy Storage
FATS, WAXES, OILS
PHOSPHOLIPIDS: makes up cell for all organisms
3. Proteins: Raw <u>Materials</u> for structure
Proteins: Raw
Factors Affecting Enzyme Function Temperature
 Low temps <u>Slow down</u> enzyme function As temperature increases, enzyme function first <u>increases</u>, then stops (<u>denatures</u>)
 Too high OR too from optimal range enzymes Remember: Denatured enzymes are permanently deformed
Remember. Bonataroa orizy
4. Nucleic Acids: Storage and <u>transport</u> of genetic information
4. Nucleic Acids: Storage and <u>transport</u> of genetic information THE STRUCTURE OF DNR DNA: Holds <u>genetic</u> information; double stranded
4. Nucleic Acids: Storage and +ransport of genetic information THE STRUCTURE OF DINR DNA: Holds genetic information; double stranded RNA: single stranded
4. Nucleic Acids: Storage and transport of genetic information THE STRUCTURE OF DNR DNA: Holds genetic information; double stranded RNA: single stranded
4. Nucleic Acids: Storage and transport of genetic information THE STRUCTURE OF DNR DNA: Holds genetic information; double stranded RNA: single stranded
4. Nucleic Acids: Storage and transport of genetic information THE STRUCTURE OF DNR DNA: Holds genetic information; double stranded RNA: single stranded
4. Nucleic Acids: Storage and transport of genetic information DNA: Holds genetic information; double stranded RNA: single stranded 5. Vitamins D - Pones C - Nearing Sugar-phosphate
4. Nucleic Acids: Storage and transport of genetic information DNA: Holds genetic information; double stranded RNA: single stranded 5. Vitamins D - Pones C - Pealing K - Dood Clotting 6. Minerals: alas in Cellular Processes Hydrogen bends
4. Nucleic Acids: Storage and transport of genetic information DNA: Holds genetic information; double stranded RNA: single stranded 5. Vitamins D - Pones C - Paling K - blood Clotting 6. Minerals: a as in Cellular Processes Hydrogen bends

Organelles and Cell Function 1. What is a prokaryote? no nucleus exibacteria - no membrane bound organelles 2. What is a eukaryote? -has a nucleus ex! plants & animals - has many membrane bound organelles Define the organelle and list if they are found in Animal cells (A), plant cells (P), Bacteria (B), or all cells 3. Cell membrane: A -controls what enters and exits the cell 4. Cytoplasm: ALL - jelly like fluid that fills the cell 5. Ribosome: A - assembles the amino acids into a protein 6. Cell Wall: P - gives rigid structure to the plant cell 7. Flagella: B, A - whip like tail for movement -small hair-like for movement 9. Pseudopodia: - cytoplasmic extensions used for movement & food

11. Mitochondria: [P.A] - makes energy (ATP) by cellular respiration

- makes food(glucose) for plans by photosynthesis

10. Nucleus: PA

12. Chloroplast: